Measurement of azimuthal anisotropy of hadron In AuAu √sNN=39GeV at RHIC-PHENIX

Yoshimasa Ikeda, RIKEN for the PHENIX collaboration

Azimuthal anisotropy

- Azimuthal anisotropy depends on initial kinematics
 - Elliptical particle emission angle distribution for noncentral collision
- It is measured as 2nd term of Fourier series

$$\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)$$

Ψ : reaction plane angle

Particle Identified v₂

- These are characteristic for each particle specie
- Heavy particle is shifted to high momentum
 - Meson, baryon and lon are deviated at p₋>2GeV/c

Number of constituent quark scaling

KET scale

- Describe the momentum shift
- Consistent separately meson, baryon or ion
- Nq scale
 - Consistent at KET<0.7GeV
 - Collective flow of qiarks

$$KE_T = \sqrt{(M^2 - P_T^2)} - M$$

Beam energy scan with v₂ analysis

- Brake of NCQ scaling
- Threshold of QGP
- Search the Critical point

Reaction Plane Resolution of PHENIX

$$v_{2observe} = v_{2real} \times \langle \cos 2(\Psi_{real} - \Psi_{observe}) \rangle$$

$$\delta v_2 \sim \frac{1}{\langle \cos 2 (\Psi_{real} - \Psi_{observe}) \rangle} \times \frac{1}{\sqrt{N}}$$

reaction plane resolusion <cos ∠Ψ>

Charged hadron v_2 for $\sqrt{s_{NN}} = 39$, 62 200GeV

V₂ have no difference from 200GeV to 39GeV

PID v₂ in 39 62

p+p is slightly large at n_q scaling

Charge separated PID v₂

Proton have larger v2 than that of anti-proton at low energy collision (39, 62GeV)

Difference v₂ between +/- charge

Proton have larger v2 than that of anti-proton at low energy collision

Collision energy and $\triangle v_2$

- p-p are deviated at low energy collision
 - The v₂ difference is flat to momentum.
- π- v₂ has slightly larger than π+
- K v₂ has no difference for +/- charge
- Annihilation effect with large net-baryon ratio?

Summary

- V_2 of π +, π -,K+,K-,p,p,d were measured at AuAu $\sqrt{s_{NN}}$ =200, 62 and 39GeV
- Proton v₂ and anti-proton v₂ are deviated
 - The difference increases to low energy collision
 - The difference is flat to momentum.
 - $-\pi v_2$ has slightly larger than $\pi +$
 - K v₂ has no difference for +/- charge
- It leaving from NCQ scaling
 - Due to large net-baryon baryon ratio?